The Role of Artificial Intelligence in Talent Acquisition and Retention

Gogor Christstmass Setyawan (1), Guijiao Zou (2), Lie Jie (3), Cai Jixiong (4), Reviandari Widyatiningtyas (5)
(1) Universitas Kristen Immanuel, Indonesia,
(2) Public universities and colleges, Taiwan, Province of China,
(3) The University of Tokyo, Japan,
(4) Universidad Central de Venezuela, Venezuela, Bolivarian Republic of,
(5) Universitas Langlangbuana, Indonesia

Abstract

Artificial intelligence (AI) is increasingly being used in various fields in the ever-growing digital era, including human resource management (HR). AI technology can solve problems such as long recruitment processes and retaining quality employees. The aim of this research is to find out how AI can improve this process. The focus of the research is how AI can be used to identify, assess and manage talent across organizations. The aim of this research is to see how AI functions in the employee acquisition and retention process. Specifically, the goal of this research is to identify how AI is used in the recruitment process to find and assess the right candidates, evaluate how effective the use of AI is in increasing employee satisfaction and engagement, and see how implementing AI impacts employee retention in the long term. Qualitative and quantitative methods were combined in a mixed approach in this research. HR managers and employees applying AI in recruitment and retention processes in various companies were thoroughly interviewed. Currently, surveys distributed to employees are used to collect quantitative data to measure employee satisfaction and engagement levels. For qualitative and quantitative data, thematic analysis and inferential techniques were used. The research results show that AI can be used in the recruitment process to reduce the time and costs required to find the right candidate. AI also helps reduce bias in candidate assessments, meaning better hiring decisions. Additionally, the use of AI in employee management increases employee satisfaction and engagement as it enables career development and work experiences tailored to them. According to survey results, employees who work with AI systems feel more valued and have better relationships with their organizations. The study found that AI significantly improves the efficiency and effectiveness of talent acquisition and retention processes. The use of AI not only speeds up and simplifies the recruitment process, but also increases employee satisfaction and their retention.

Full text article

Generated from XML file

References

Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A.H. (2021). The Arithmetic Optimization Algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609.https://doi.org/10.1016/j.cma.2020.113609

Baltrusaitis, T., Ahuja, C., & Morency, L.-P. (2019). Multimodal Machine Learning: A Survey and Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443.https://doi.org/10.1109/TPAMI.2018.2798607

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D. , Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.https://doi.org/10.1016/j.inffus.2019.12.012

Bi, WL, Hosny, A., Schabath, MB, Giger, ML, Birkbak, NJ, Mehrtash, A., Allison, T., Arnaout, O., Abbosh, C., Dunn, IF, Mak, RH, Tamimi , R.M., Tempany, C.M., Swanton, C., Hoffmann, U., Schwartz, L.H., Gillies, R.J., Huang, R.Y., & Aerts, H.J.W.L. (2019). Artificial intelligence in cancer imaging: Clinical challenges and applications. CA: A Cancer Journal for Clinicians, 69(2), 127–157.https://doi.org/10.3322/caac.21552

Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2021). OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172–186.https://doi.org/10.1109/TPAMI.2019.2929257

Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42.https://doi.org/10.1007/s11747-019-00696-0

Dong, K., Peng, X., & Wang, Z. L. (2020). Fiber/Fabric?Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Advanced Materials, 32(5), 1902549.https://doi.org/10.1002/adma.201902549

Duan, Y., Edwards, J.S., & Dwivedi, Y.K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71.https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Duraisamy, K., Iaccarino, G., & Xiao, H. (2019). Turbulence Modeling in the Age of Data. Annual Review of Fluid Mechanics, 51(1), 357–377.https://doi.org/10.1146/annurev-fluid-010518-040547

Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos , V., Ilavarasan, P.V., Janssen, M., Jones, P., Kar, A.K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M.D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994.https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Feldmann, J., Youngblood, N., Wright, C.D., Bhaskaran, H., & Pernice, WHP (2019). All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569(7755), 208–214.https://doi.org/10.1038/s41586-019-1157-8

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.https://doi.org/10.1145/3422622

Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of deep learning techniques for autonomous driving. Journal of Field Robotics, 37(3), 362–386.https://doi.org/10.1002/rob.21918

Gunning, D., & Aha, D. W. (2019). DARPA's Explainable Artificial Intelligence Program. AI Magazine, 40(2), 44–58.https://doi.org/10.1609/aimag.v40i2.2850

Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G.-Z. (2019). XAI—Explainable artificial intelligence. Science Robotics, 4(37), eaay7120.https://doi.org/10.1126/scirobotics.aay7120

Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5–14.https://doi.org/10.1177/0008125619864925

He, J., Baxter, S.L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36.https://doi.org/10.1038/s41591-018-0307-0

Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Causability and explainability of artificial intelligence in medicine. WIREs Data Mining and Knowledge Discovery, 9(4), e1312.https://doi.org/10.1002/widm.1312

Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, JF, Darbandi, SF, Knowles, D., Li, YI, Kosmicki, JA, Arbelaez, J., Cui, W., Schwartz, GB, Chow, ED, Kanterakis, E., Gao, H., Kia, A., Batzoglou, S., Sanders, S. J., & Farh, KK-H. (2019). Predicting Splicing from Primary Sequence with Deep Learning. Cell, 176(3), 535-548.e24.https://doi.org/10.1016/j.cell.2018.12.015

Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25.https://doi.org/10.1016/j.bushor.2018.08.004

Kelly, C.J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 195.https://doi.org/10.1186/s12916-019-1426-2

Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., & Nandi, A.K. (2020). Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138, 106587.https://doi.org/10.1016/j.ymssp.2019.106587

Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71.https://doi.org/10.1148/radiol.2020200905

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy, 23(1), 18.https://doi.org/10.3390/e23010018

McKinney, S.M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G.S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F.J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C.J., King, D., … Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94.https://doi.org/10.1038/s41586-019-1799-6

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2022). A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys, 54(6), 1–35.https://doi.org/10.1145/3457607

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1–38.https://doi.org/10.1016/j.artint.2018.07.007

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I.D., & Gebru, T. (2019). Model Cards for Model Reporting. Proceedings of the Conference on Fairness, Accountability, and Transparency, 220–229.https://doi.org/10.1145/3287560.3287596

Pinzi, L., & Rastelli, G. (2019). Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences, 20(18), 4331.https://doi.org/10.3390/ijms20184331

Roy, K., Jaiswal, A., & Panda, P. (2019). Towards spike-based machine intelligence with neuromorphic computing. Nature, 575(7784), 607–617.https://doi.org/10.1038/s41586-019-1677-2

Sarker, I. H. (2021a). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science, 2(6), 420.https://doi.org/10.1007/s42979-021-00815-1

Sarker, I. H. (2021b). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160.https://doi.org/10.1007/s42979-021-00592-x

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., & Silver, D. (2020). Mastering Atari, Go, chess and shogi by planning with a learned model. Nature, 588(7839), 604–609.https://doi.org/10.1038/s41586-020-03051-4

Shastri, B.J., Tait, A.N., Ferreira De Lima, T., Pernice, WHP, Bhaskaran, H., Wright, C.D., & Prucnal, P.R. (2021). Photonics for artificial intelligence and neuromorphic computing. Nature Photonics, 15(2), 102–114.https://doi.org/10.1038/s41566-020-00754-y

Shrestha, A., & Mahmood, A. (2019). Review of Deep Learning Algorithms and Architectures. IEEE Access, 7, 53040–53065.https://doi.org/10.1109/ACCESS.2019.2912200

Sutton, R.T., Pincock, D., Baumgart, D.C., Sadowski, D.C., Fedorak, R.N., & Kroeker, K.I. (2020). An overview of clinical decision support systems: Benefits, risks, and strategies for success. Npj Digital Medicine, 3(1), 17.https://doi.org/10.1038/s41746-020-0221-y

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56.https://doi.org/10.1038/s41591-018-0300-7

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S.D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233.https://doi.org/10.1038/s41467-019-14108-y

Vinyals, O., Babuschkin, I., Czarnecki, WM, Mathieu, M., Dudzik, A., Chung, J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J.P., Jaderberg, M., … Silver, D. (2019) . Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782), 350–354.https://doi.org/10.1038/s41586-019-1724-z

Vyas, D.A., Eisenstein, L.G., & Jones, D.S. (2020). Hidden in Plain Sight—Reconsidering the Use of Race Correction in Clinical Algorithms. New England Journal of Medicine, 383(9), 874–882.https://doi.org/10.1056/NEJMms2004740

Wang, X., Han, Y., Leung, VCM, Niyato, D., Yan, X., & Chen, X. (2020). Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 22(2), 869–904.https://doi.org/10.1109/COMST.2020.2970550

Warner, K. S. R., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long Range Planning, 52(3), 326–349.https://doi.org/10.1016/j.lrp.2018.12.001

Wu, C., Wang, A.C., Ding, W., Guo, H., & Wang, Z.L. (2019). Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Advanced Energy Materials, 9(1), 1802906.https://doi.org/10.1002/aenm.201802906

Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated Machine Learning: Concepts and Applications. ACM Transactions on Intelligent Systems and Technology, 10(2), 1–19.https://doi.org/10.1145/3298981

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Proceedings of the IEEE, 107(8), 1738–1762.https://doi.org/10.1109/JPROC.2019.2918951

Authors

Gogor Christstmass Setyawan
masgogor@ukrimuniversity.ac.id (Primary Contact)
Guijiao Zou
Lie Jie
Cai Jixiong
Reviandari Widyatiningtyas
Setyawan, G. C., Zou, G., Jie, L., Jixiong, C., & Widyatiningtyas, R. (2024). The Role of Artificial Intelligence in Talent Acquisition and Retention. Journal Markcount Finance, 2(2), 252–262. https://doi.org/10.70177/jmf.v2i2.1286

Article Details

Similar Articles

You may also start an advanced similarity search for this article.

No Related Submission Found